N18 – Atomic Structure and Periodicity

Target: I can describe and explain various patterns/trends visible on the periodic table by using concepts such as shielding and nuclear attraction.

N18 – Atomic Structure and Periodicity Periodic Trends

Patterns work really well!

Mendeleev predicted the properties of lots of elements!

Ga	llium (eka-aluminum)		Germanium (eka-silicon)				
	Mendeleev's predicted properties	Actual properties		Mendeleev's predicted properties	Actual properties		
Atomic mass	About 68 amu	69.72 amu	Atomic mass	About 72 amu	72.64 amu		
Melting point	Low	29.8 °C	Density	5.5 g/cm^3	5.35 g/cm ³		
Density	5.9 g/cm^3	5.90 g/cm ³	Formula of oxide	XO_2	GeO_2		
Formula of oxide	X_2O_3	Ga_2O_3	Formula of chloride	XCl_4	GeCl_4		
Formula of chloride	XCl_3	$GaCl_3$					

Summary of Periodic Trends

IONIZATION ENERGY ELECTRONEGATIVITY ELECTRON AFFINITY*

EFFECTIVE NUCLEAR CHARGE - Z_{EFF}

ELECTRONEGATIVITY ELECTRON AFFINITY

Summary of Periodic Trends

Summary of Periodic Trends

Atomic Radius

- Several ways to measure
 - Van der Waals radius = nonbonding
 - Covalent radius = bonding radius
- All give slightly different values

 Atomic radius is an average radius of an atom based on measuring large numbers of elements and compounds.

Atomic Radius Trend

KEY POINTS TO DESCRIBE GOING DOWN A GROUP:

- Can <u>NOT</u> just say "because there is more shielding"
 - no vocab dropping!
- The size of an atom is related to the <u>distance</u> the valence electrons are from the nucleus.
- You <u>must</u> specifically mention that the higher energy level is bigger and further away.
 - yes this seems obvious...but if you want points be careful!

Radius – Quantum Mechanical Reason

Increases down a group (top to bottom)

Moving down a group:

Adds a principal energy level.

The larger the principal energy level an orbital is in:

- The larger its volume.
- The farther the e-'s most probable distance is from nucleus.
- The less attraction it will have for the nucleus.
- The more shielding the valence electrons experience from inner core electrons.

Therefore: The larger the radius

Atomic Radius Trend

KEY POINTS TO DESCRIBE GOING ACROSS A PERIOD:

- Can <u>NOT</u> just say "because there is greater effective nuclear charge"
 - no vocab dropping!
- The size of an atom is related to the <u>distance</u> the valence electrons are from the nucleus.
- As you go to the right there are more protons added BUT shielding doesn't increase since the e's are added to the same energy level.
- You <u>must</u> specifically mention that this results in greater nuclear attraction and therefore a smaller radius
 - yes this seems obvious...but if you want points be careful!

Radius – Quantum Mechanical Reason

Decreases Across a Period (Left to Right)

Going to the right:

- Adds a proton each time
- No addition of shielding (adding e- to same energy level)

Adding a proton with no increased shielding:

- Increases effective nuclear charge on the valence e's
- The stronger the attraction it will have for the nucleus.

The stronger the nuclear attraction:

The closer they are to the nucleus

Therefore: smaller radius

Ionic Radius Trend

- lons in same group have the same charge.
- Ion size increases down column.
 - Higher valence shell, larger
- Cations < neutral atoms
- Anions > neutral atoms.
- Cations < anions.

- Larger (+) charge = smaller cation
 - For isoelectronic species
 - Isoelectronic = same electron configuration
- Larger (-) charge = larger anion
 - For isoelectronic species

Ionic Radius Trend

Neutral Cation Anion

Ionization Energy is the minimum energy needed to remove an electron from an atom or ion

- In the gas state
- Endothermic process takes energy
- Valence electron easiest to remove, lowest IE

1st Ionization Energy – Energy to remove e⁻ from neutral atom $M_{(g)} + IE_1 \rightarrow M^{1+}_{(g)} + 1$ e-

2nd Ionization – Energy to remove e⁻ from 1+ ion $M^{1+}_{(g)} + IE_2 \rightarrow M^{2+}_{(g)} + 1e$ -

Increases across a period (left to right)

- Each time you go to the right you add a proton
- No significant increase in shielding b/c adding e- to same energy level – they do not shield as well as inner levels
- Increase in nuclear attraction
- Harder to take one away
- Increased IE

Decreases down a group

- Each time you go down you have another energy level
- Inner core electrons shield outer electrons
- Increased radius
- Decreased nuclear attraction
- Easier to take away an electron
- Decreased IE

Irregularities

Half filled and totally filled sublevels (orbital set)

- Extra repulsions of electrons in paired orbitals
 - Makes it easier to remove an electron
 - Lower IE than expected

Moving to a p orbital (Mg \rightarrow Al)

- p orbital does not penetrate as much as an s orbital
 - Less nuclear attraction
 - Lower IE than expected

Increases for successive e-'s taken from same atom

- Each time you take one away, atom gets smaller.
- Smaller atom means greater nuclear attraction to valence e-
- Harder to take away another e-
- Increases IE

Successive Ionization Energies

Large jump in IE shows when you begin removing core e's

- Helps you figure out most likely charge on element
- The charge is the number of ionizations that happened BEFORE the large jump

TABLE 8.1 Successive Values of Ionization Energies for the Elements Sodium through Argon (kJ/mol)								
Element	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇	
Na	496	4560						
Mg	738	1450	7730	730 Core electrons				
Al	578	1820	2750	11,600				
Si	786	1580	3230	4360	16,100			
Р	1012	1900	2910	4960	6270	22,200		
S	1000	2250	3360	4560	7010	8500	27,100	
CI	1251	2300	3820	5160	6540	9460	11,000	
Ar	1521	2670	3930	5770	7240	8780	12,000	

Electron Affinity – ∆ in energy when neutral atom gains e⁻

- Gas state
- <u>Usually</u> energy is released (exothermic, negative value)

$$M_{(g)} + 1e^{-} \rightarrow M^{1-}_{(g)} + EA$$

- Some alkali metals and all noble gases are endothermic
- More energy released, the larger the electron affinity (larger negative = larger EA)

Alkali metals decrease electron affinity down the column.

- But not all groups do
- Generally irregular increase in EA from second period to third period

"Generally" increases across period

- Becomes more negative from left to right
- Not absolute
- Group 5A often lower EA than expected extra electron must pair
- Groups 2A and 8A generally very low EA because added electron goes into higher energy level or sublevel

Highest EA in any period = halogen

Very irregular pattern compared to other PT Trends

Electron Affinities (kJ/mol)								
1A							8A	,
H -73	2A	3A	4A	5A	6A	7A	He >0	
Li -60	Be >0	B -27	C -122	N >0	O -141	F -328	Ne >0	
Na -53	Mg >0	Al -43	Si -134	P -72	S -200	Cl -349	Ar >0	
K -48	Ca –2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr >0	
Rb -47	Sr –5	In -30	Sn –107	Sb -103	Te -190	I -295	Xe >0	

Electronegativity

The ability of an atom to attract bonding electrons to itself is called electronegativity.

Increases across period (left to right) Decreases down group (top to bottom)

- Fluorine most electronegative
- Francium least electronegative
- Noble gas atoms are not assigned values.
- Opposite of atomic size trend.

The larger the difference in electronegativity, the more polar the bond.

Negative end toward more electronegative atom.

Electronegativity

Electronegativity Difference & Bond Type

Pure Covalent

- Difference in electronegativity between bonded atoms is <u>0</u>
- Equal sharing

Nonpolar Covalent

Difference in electronegativity is <u>0.1 to 0.4</u>

Polar Covalent

Difference in electronegativity is <u>0.5 to 1.9</u>

Ionic

Difference in electronegativity is <u>larger than or equal to 2.0</u>

Electronegativity Difference & Bond Type

Electronegativity Difference & Bond Type

TABLE 9.1 The Effect of Electronegativity Difference on Bond Type					
Electronegativity Difference (Δ EN)	Bond Type	Example			
Small (0-0.4)	Covalent	Cl_2			
Intermediate (0.4–2.0)	Polar covalent	HCI			
Large (2.0+)	Ionic	NaCl			

Bond Dipole Moments

Dipole – A substance with a partial (+) and partial (-) end Dipole moment - μ , - a measure of bond polarity.

 Directly proportional to the size of the partial charges and directly proportional to the distance between them.

$$\mu = (q)(r)$$

Magnetic Properties

Paramagnetic – Atom or ion with a net magnetic field

- Result of unpaired electrons in orbitals
- Will be weakly attracted to a magnetic field

Diamagnetic – Atom or ion with no magnetic field

- Result of all paired electrons in orbitals
- Slightly repelled by a magnetic field

Ferromagnetic – Group of atoms in a solid crystal or lattice that keeps its magnetism even when there is no magnetic field applied

Why care about Paramagnetism?

NMR Machine – Helps determine the structure of molecules MRI – Applied to images of the body

Why care about Paramagnetism?

NMR Machine – Helps determine the structure of molecules MRI – Applied to images of the body

Link to YouTube Presentation

https://youtu.be/RwCDvBtAGbo